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The characteristic scales, dispersions, and dissipation rates of isotropic, degenerate, turbulent velocity and
scalar fields as well as several third-order moments for these fields have been determined and compared to
those obtained by direct numerical simulation. These quantities determined as a time function were used to
close the equation for the joint probability density of a scalar and its gradient, obtained by the authors ear-
lier. The coefficients of this equation calculated using two models developed by the authors are in good
agreement with those determined by direct numerical simulation.

Introduction. In modeling processes of turbulent mixing and combustion it is necessary to calculate both the
fields of average quantities (velocity, pressure, temperature, and reagent concentration) and the fields of their fluctua-
tions. In the majority of cases, the rate of the chemical reaction attendant on these processes depends strongly and
nonlinearly on the magnitude of these fluctuations and a large number of statistical moments should be determined.
Therefore, the usual method of turbulence theory, consisting of gradient approximation of the unknown statistical mo-
ments, is not sufficiently adequate for calculating a turbulent scalar field in the case where a chemical reaction occurs.

In this case, a turbulent scalar field is frequently investigated with the use of models for the joint probability
density function (JPDF) of quantities determining the rate of the chemical reaction. Knowledge of the joint probability
densities of these quantities is equivalent to knowledge of all the statistical moments and makes it possible to cope
with the high nonlinearity of the chemical reaction since its rate can be represented in a closed form in terms of the
indicated joint probability densities.

Various nonclosed JPDF equations are described in [1]. They can be closed with the use of conditional
Gaussian distribution functions as well as experimental data and data of direct numerical simulation. The numerical so-
lution of JPDF equations is complicated by the multidimensionality of these distributions. For example, the joint prob-
ability density of the fluctuations of a three-dimensional field of velocity, temperature, and two independent scalars
will be a function of six variables, not counting time. Because of this, the Monte Carlo method is widely used for
numerical solution of various JPDF equations [2, 3].

One of the joint probability densities used for the description of turbulent flames, which are far from being
chemically equilibrium, is the joint probability density of a scalar and its gradient [1]. Closed equations for this func-
tion have been constructed in [4–6]. Note that these models contain unknown coefficients, including the characteristic
frequencies of turbulence of dynamic and scalar fields. They can be determined with the use of experimental data, data
of direct numerical simulation, or additional coefficient models.

The aim of the present work is construction of models for determining the coefficients in the JPDF equation
of [6] and testing these models by comparison of the data obtained with them to the data of direct numerical simula-
tion.

Since the above-mentioned JPDF equations [4–6] are single-point from the viewpoint of the statistics used,
their coefficients should account for the spatial structure of turbulence — the characteristic spatial and time scales of
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turbulence (characteristic frequencies) in the simplest case. More complex coefficients can be determined in the case
where the distribution of the kinetic turbulent energy over the length scales or the frequency spectrum is known.

JPDF Equation for a Scalar and Its Gradient. The problem on coefficients of a JPDF equation is consid-
ered using the equation of [6] as an example. A closed JPDF equation has been constructed for Pt(W, Γ). It has the
form

∂Pt (W, Γ)

∂t
 = − DW

2
 
∂2

∂Γ2
 Pt (W, Γ) + 

SUC (t)

2
 √ε (t)15ν

 










1 + W 

∂

∂W




 − 

DW
2

χ (t)
 



3 + W 

∂

∂W











 Pt (W, Γ) −

− DNt (Γ) 




2

W
2 − 

2

W
 
∂
∂W

 + 
∂2

∂W2




 Pt (W, Γ) − 2D 

∂

∂Γ
 



Xt (Γ) 




1 + W 

∂

∂W




 Pt (W, Γ)




 −

− 



ω
.
 (Γ) 

∂
∂Γ

 + 
∂ω
.
 (Γ)
∂Γ

 



2 + W 

∂
∂W







 Pt (W, Γ) . (1)

The functions Xt(Γ), Nt(Γ), and SUC(t) in Eq. (1) are given by the formulas
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Thus, to determine the coefficients of Eq. (1), it is necessary to know the following six time functions: c2
__

(t),
χ(t), ε(t), SUC(t), T2(t), and DCC

(IV)(0, t). They depend on the process and should not all be determined independently.
Expressions for Coefficients of the JPDF Equation in Terms of Distributions of the Intensity of Turbu-

lent Fluctuations over the Length Scales. Let us consider relations between the above-mentioned coefficients, the
JPDF, Pt(W, Γ), Pt(r), and Pt

(C)(t). The latter two functions are related to the correlation (B(r, t) and B(C)(r, t)) and
structural (DLL(r, t) and DCC(r, t)) functions of the turbulent fluctuations of velocity and scalar by the following for-
mulas [7]:
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The first moments of the scalar field — its dispersion and dissipation rate — are expressed in terms of the JPDF
function of the scalar and its gradient via the normalization relations

c
2
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Pt (W, Γ) dWdΓ , (5)

χ (t) = ∫ W2
Pt (W, Γ) dWdΓ . (6)
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The dispersions of the velocity and scalar fields and their dissipation rates can be calculated alternatively
using the distribution functions Pt(r) and Pt

(C)(t). According to the definitions of Pt(r) and Pt
(C)(r), the following equali-

ties are true for the dispersions:
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Multiplier 3 appears in the expression for q2
__

(t) because the function Pt(t) is written for one component of the velocity
vector.

Expressions for the dissipation rates ε(t) and χ(t) in terms of Pt(r) and Pt
(C)(r) will be given below after the

formulation of equations for these functions.
SUC(t) can be expressed in terms of the third derivative of the third-order structural function of the velocity

and scalar fields DLCC
′′′ (0, t), the rate of dissipation of the intensity of the turbulent scalar fluctuations χ(t), and the rate

of dissipation of the velocity fluctuations ε(t):
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An expression for SUC(t) in terms of the function DLCC
′′′ (0, t) can be obtained by comparison of formulas presented in

[7]: (12.146) (p. 69) and DLC,C(r) = 4 BLC,C(r) (p. 367).
To relate the quantity DLCC

′′′ (0, t) to the distributions Pt(r) and Pt
(C)(t), we will use the Yaglom equation [7]
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Differentiating it three times with respect to the variable r and taking into account formula (4), we obtain

DLCC
′′′  (0, t) = 4DPt
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To determine the relation between the distribution of the velocity fluctuations and the quantity ε(t), we will
use the Kolmogorov equation (formula (22.2) in [7]):
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Since at small values of r the third-order structural function of the velocity field is a third-order infinitesimal,
we obtain that
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at r < η. Differentiating relation (12) two times with respect to r and taking into account (3), we find

ε (t) = 15νPt
′  (0) . (13)

Since at small r the function DLCC(r, t) in the Yaglom equation (9) is a third-order infinitesimal with respect
to r, we have

χ (t) = 3DPt
(C)′

 (0) . (14)
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Taking into account formulas (13), (14), and (10), we write the expression for SUC(t):
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For the correlator T(t) in [6] we have obtained the formula
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distribution of the intensity of the scalar fluctuations over various length scales in the following way:
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Thus, all six auxiliary functions in the JPDF equation for Pt(W, Γ) can be expressed in terms of the distribu-

tions Pt(r) and Pt
(C)(r). In actuality, only the higher moments SUC(t), T2(t), and DCC

(IV)(t) in Eq. (1) are unknowns, and

their definitions in terms of JPDF (5) and (6) can be used for calculating the square of the dispersion of the scalar
field and its dissipation rate. The latter circumstance can be used for selection of the parameters and testing the coef-
ficient model. In order that the information on the behavior of the higher moments can be used, it is necessary that

the values of the dispersion and dissipation c2
__

(t) and χ(t) calculated by the coefficient model correspond to the nor-
malizations of the JPDF (5) and (6).

Introducing the scales of the velocity field U0 = 2√q0
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 ⁄ D, we write the formulas for calculating the desired coefficients in dimen-

sionless form. Since below we will use only the dimensionless functions, the same designations will be left for the di-
mensionless variables
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Reviewing this section, we note that the quantities on the left-hand side of equality (18) can be obtained from
the normalization relations (5) and (6), and the required higher moments in (19) can be expressed in terms of the
function Pt

(C)′′′ (0) representing the third derivative of the distribution of the intensity of the scalar fluctuations over the
length scales r at a zero value of r, because at r equal to zero the first derivatives Pt

′(0) and Pt
(C)′(0) are related to the

dispersions and the dissipation rates via (18).
Closed Model for the Distributions Pt(r) and Pt

(C)(r). Let us formulate models for determining the functions
Pt(r) and Pt

(C)(r). At first we derive an equation for the distribution of the scalar fluctuations of a reagent over various
length scales and then repeat the same derivation procedure for the distribution of the velocity fluctuations.

As the initial point, we will use the Corrsin equation for the correlation function of the reagent BCC =
c(x)c(x + r)
__________

 in the dimensional form (formula (14.72) in [7])
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Here BLC,C (r) = u(x)c(x)c(x + r)
_____________

 is the third-order, two-point moment of the velocity field and the fluctuating scalar
field and Bϕl(r) = Φ[C(x)]c(x + r) is the correlation function of the chemical-reaction rate Φ(C) and the reagent-con-
centration fluctuations. Since C
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(t) (i.e., the average concentration of the reagent depends on time), to make a com-
plete description it is also necessary to use the equation for the average quantity C
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Let us take a derivative of the left and right sides of Eq. (20) with respect to r. Then, for the function de-
scribing the distribution of the intensity of the reagent fluctuations we obtain
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The function Wt(r) is produced by the chemical source term in the initial equation, i.e.,
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The nonclosedness of Eq. (22) is due to the presence of the functions BLC,C(r) and Wt(r) in it. An expression
for the function BLC,C(r) in terms of the functions Pt(r) and Pt

(C)(r) can be obtained using the analogy between turbu-
lent and molecular diffusion. We define the micro- (Mi) and macrocomponent (Ma) of the turbulent field of the re-
agent C as
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Let us write an equation for the macrocomponent Ma. To do this, we will integrate the left- and right-hand
sides of Eq. (22) over r from r to ∞:
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Here Π(C)(r) is the turbulent flux of the scalar-fluctuation intensity through the point r of the spectrum. By analogy
with the molecular transfer, we will assume that the flux Π(C)(r) has the form
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Formula (26) for the turbulent flux involves the unknown function Dtur(r) representing an analogy of the dif-
fusion coefficient in the expression for the molecular flux. The turbulent diffusion is due to the action of all the vor-
tices with dimensions smaller than r. Therefore, Dtur(t) can be represented as
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Dtur (r) = ∫ 
0
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dtur (r
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Here dtur(r~)dr~ is the contribution of the vortices with dimensions from r~ to r~ + dr~ to the turbulent-diffusion coefficient
Dtur(r). It would appear reasonable that the coefficient dtur(r~) depends on the distribution of the energy of the turbulent
fluctuations over the length scales Pt(r). Using the reasonings of the dimensionality theory, we write

dtur (r
~) = β √Pt (r

~) r~ . (28)

Here β is a constant determined experimentally. In view of (28), the expression for the turbulent-diffusion coefficient
(27) takes the form
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In the final analysis, the expression for the turbulent flux of the scalar-fluctuation intensity through the point r can be
represented as

ΠT
(C)

 (r) = 2β ∫ 
0

r

√Pt (r
~) r~ dr~ 





∂
∂r

 + 
2
r



 Pt
(C)

 (r) . (30)

Substituting this expression into equality (25) and calculating the derivative of the left- and right-hand sides
of the equality obtained with respect to r, we obtain the following equation for Pt

(C)(r) in dimensionless form:
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The equation for the distribution of the turbulent scalar fluctuations Pt
(C)(r) involves the function Pt(t) describ-

ing the distribution of the turbulent fluctuations over various length scales.
An equation for the function Pt(r) can be obtained in the same approximation and by the same method as in

the case of derivation of the equation for Pt
(C)(r). However, in this case, the Ka′ rma′n–Howarth equation is used as the

initial equation for the correlation function. This equation in dimensionless form is as follows:
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Here γ is a constant determined by comparison of the theoretical and experimental data.
To estimate the constants β and γ in (31) and (32), it is necessary to relate them to the constants c and s in

the "two-thirds" power law for the corresponding structural functions [7]
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Let us solve (31) and (32) analytically in the inertial and inertial-convective intervals of the scales. The equations for
Pt(r) and Pt

(C)(r) in these intervals take the form
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Here, the functions Pt(r) and Pt
(C)(r) are defined, in view of (33) and (34), as
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Substituting expressions (37) and (38) into Eqs. (35) and (36) and performing integration, we obtain formulas
relating the constants γ and β to the constants c and s:
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Using the experimental values of c and s from [7], we obtain the following assessment: γ = 0.24 and β = 1.08.
Simultaneous solution of Eqs. (31) and (32) gives expressions for the functions Pt

(C)(r) and Pt(r), necessary
for the calculation of the statistical characteristics of the turbulent velocity and scalar fields (18)–(19) which are coef-
ficients in the JPDF equation for Pt(W, Γ).

Expressions for Coefficients in the JPDF Equation in Terms of Distributions of the Intensity of Turbu-
lent Fluctuations over the Wave Numbers. An alternative model for determining the coefficients in (1) can be con-
structed on the basis of the transfer equations for the distributions of the turbulent energy and the intensity of the
scalar fluctuations over the spectrum of wave numbers. The transfer equations were closed with the use of the Heis-
enberg hypothesis. The equation for E(k, t) has the form [7, p. 215]
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The constant α in (40) was evaluated by comparison of the Kolmogorov constant calculated based on the solution of
this equation to its experimental value (Ko = 1.44). This approach gives α = 0.54. This value falls within the range
of values of this constant 0.2–0.85 obtained theoretically and experimentally (see [7, p. 220]). The best agreement be-
tween the numerical solution of the spectral-transfer equation (40) and the data of the direct numerical simulation per-
formed in [8] has been obtained by us at α = 0.45, which conforms with the data of [7], where it has been noted that
the best agreement between the experimental data of Stewart and Townsend and the calculations of Tolmin and Meetz
for the decaying turbulence downstream of a grid is observed at α D 0.45.

The equation for the scalar spectrum E(C)(k, t) can be represented as
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The constant σ in Eq. (41) was initially evaluated by comparison of the Obukhov–Batchelor constant (calculated based
on the solution of this equation in the inertial-convective interval) to its experimental value Ba = 0.4, which gives σ
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= 1.85. Then this constant was decreased to σ = 1.25 in an attempt to bring the results of the numerical solution into
coincidence with the data of the direct numerical simulation [8].

Below we present expressions for the desired coefficients of Eq. (1) in terms of E(k, t) and E(C)(k, t) [9]:
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the rate of dissipation of the turbulent fields of velocity ε(t) and scalar χ(t):
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the mixed asymmetry of the derivatives of the fluctuating fields of velocity and scalar SUC(t):
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where T(C)(k, t) is the function characterizing the transfer of the intensity of the turbulent fluctuations of the scalar
through the spectrum of wave numbers in the Corrsin equation for the spectrum E(C)(k, t);

the fourth derivative of the second-order, two-point structural function of the scalar field at a zero value of
this variable:
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4
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 (k, t) dk . (45)

Setting of the Initial Conditions in Subsidiary Problems. One of the objectives of the present work is com-
parison of the data obtained with the data of direct numerical simulation. Therefore, we used initial conditions identical
to those of the direct numerical simulation in the corresponding works as well as literature data [8] and data of our
direct numerical simulation (hereinafter, the direct numerical simulation of isotropic velocity and scalar fields per-
formed by one of the authors will be referred to as DNS-1).

In [8], the initial conditions were defined by the following relations:

E (k, 0) = AUk
4
 exp (− Bk

2) ,   E(C) (k, 0) = ACk
4
 exp (− Bk

2) , (46)

where AU = 6√πB3 ⁄ 2, AC = 12√πB3 ⁄ 2, and B = 0.0220971.
Curves of the initial distributions of the velocity and scalar fluctuations in the space of wave numbers ob-

tained by DNS-1 are shown in Fig. 1. The initial field consists of large-scale fluctuations, to which correspond peaks
of the distributions at small values of the wave number k. These distributions were converted using the formulas of
[7, 10]
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 kE
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to the space of length scales, and then the calculations were performed on the basis of models (31)–(32) and (40)–(41)
in the spaces of r and k.

Initial Conditions of DNS-1. DNS-1 was performed in the computational region of dimension (2π)3 with
1283 nodes, maximum wave number k = 383.324, and initial turbulent Reynolds number Reλ(0) = u′λ ⁄ ν = 56.45, con-
structed in the Taylor length scale λ(0) = 0.48157 at a root-mean-square magnitude of the velocity fluctuation u′(0) =
1.407. The scalar field transferred by the velocity field is homogeneous, isotropic, and chemically inertial; in this case,
the Prandtl number Pr = 0.7 and the kinematic viscosity ν = 0.012. Mixing occurs at a practically segregated scalar
field with an average value close to 0.7. The Reynolds and Peclet numbers are Re = UL/ν = 736.7 and Pe = 515.7.
Below, the data of DNS-1 are presented in dimensionless form. To bring the data to the dimensionless form, we used
the scales of length L0 = 2π, velocity U0 = u′(0) = √ q2

__
(0) ⁄ 3  = 1.407, time t0 = L0

 ⁄ U0, and scalar √c2
__
(0) .

Results. In Figs. 2–9, the data of the numerical solution of the model equations (31)–(32) and (40)–(41) are
shown in comparison to the data of [8] and the data of DNS-1.

Fig. 1. Initial distributions of the turbulent fields of velocity (1) and scalar (2)
obtained by DNS-1.

Fig. 2. Evolution of the dispersion (a) and dissipation (b) of the velocity fluc-
tuations: 1) DNS-1; 2) calculation with model (31)–(32); 3) calculation with
model (41)–(42).
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Figure 2 shows the evolution of the dispersion and the dissipation rate of the velocity-fluctuation field. Since
turbulent-energy sources are absent in an isotropic field, the kinetic energy of turbulence Ktur = q2

__
(t)/2 and the rate of

its dissipation ε(t) degenerate. The model constructed in the space of length scales (31)–(32), unlike the DNS-1 and
the spectral model (40)–(41), gives a nonmonotonic dependence of the dissipation rate on time at the initial stage of
the evolution. The nonmonotonic behavior of the dissipation rate (Fig. 2b) is characteristic of a low-dissipation initial
field of the velocity fluctuations. At the initial stage, competing processes of increasing the dissipation rate occur be-
cause of the breakdown of large vortices, the increase in the velocity gradients, and the decrease in the dissipation rate
as a result of the decay of turbulence and the decrease in the kinetic energy of turbulence as a whole. As a conse-
quence, ε(t) increases and reaches a maximum value for a dimensionless time equal approximately to unity, which cor-
responds, in order of magnitude, to one turnover of an energy vortex.

Analogous graphs of change in the relative dispersion and the dissipation rate of the scalar field are presented
in Fig. 3. The initial field of the scalar fluctuations is more large-scale as compared to the corresponding field of ve-
locity fluctuations (see Fig. 1); therefore, for all the calculations (DNS-1 and models (31)–(32) and (40)–(41)) the rate

Fig. 3. Evolution of the dispersion (a) and dissipation (b) of the scalar fluctua-
tions. The designations are the same as in Fig. 2.

Fig. 4. Evolution of the mixed skewness of the derivatives of the fluctuating
fields of velocity and scalar SUC(t): a): 1–3) DNS-1 (SUC(t) is calculated by
three different components of the velocity and scalar gradient); 4) calculation
with model (31)–(32); 5) calculation with model (41)–(42); b): 1) DNS-1 [8];
2) direct-interaction approximation [8]; 3) test-field model [8]; 4) calculation in
the space of wave numbers with model (41)–(42).
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of dissipation of the scalar field increases in the initial period because of the increase in its gradients. By and large,
the data on the evolution of the dispersion of the fluctuations of the scalar field and the rate of its dissipation obtained
by the two coefficient models and DNS-1 are in satisfactory agreement.

Figure 4 shows the results of the calculation of the third moment — the mixed skewness of the derivatives
of the fluctuating velocity and scalar fields. The mixed skewness SUC(t) describes the influence of the turbulent veloc-
ity-gradient field on the scalar-gradient field.

It was originally believed [11] that SUC(t) → 0 at Schmidt numbers Sc << 1. However, it was subsequently
shown [12] that SUC remains practically unchanged and equal to −0.5 for 0.1 < Sc < 1. According to [13], the skewness
of the gradient SUC(t) = −0.4 at Sc = 3 and, according to [14], SUC(t) = −0.4 at Sc = 0.04 and SUC(t) = −0.5 at Sc
= 144.

It is known that the asymptotic value of SUC(t) is related to the corresponding value of the gradient skewness
of the fluctuating velocity field S(t) by the relation [7]

5
3

 SUC
2

 (t) + 
7

18
 SUC (t) S (t) = 

2
3

 . (49)

The value of S(t) = –0.4 has been measured experimentally [15]. The mixed skewness of the gradients SUC(t) calcu-
lated by formula (49) is SUC(t) C −0.6. In Fig. 4a, the calculation data obtained with models (31)–(32) and (40)–(41)
are compared to the data of DNS-1 and, in Fig. 4b, the calculation data obtained with the spectral model (40)–(41)
are compared to the data of the direct numerical simulation performed in [8] and to the data of other models in [8].

The results of the calculation of the higher moment DCC
(IV)(0, t) — the fourth derivative of the structural func-

tion — are presented in Fig. 5. All three curves agree qualitatively; however; the best quantitative agreement between
the calculation data for DCC

(IV)(0, t) and the analogous data of DNS-1 have been obtained with the spectral model (40)–
(41). It should be noted that the coefficient DCC

(IV)(0, t) has a small value and therefore is of little importance in Eq.
(1). The most important higher moment is the coefficient SUC(t) of the term responsible for the action of the hydro-
dynamic field on the field of the scalar fluctuations.

The characteristic scales of the turbulent field are shown in Figs. 6–9. Here the Reynolds number of turbu-

lence Reλ = λu′ ⁄ ν is constructed in the Taylor microscale of the velocity field with regard for the root-mean-square

magnitude of the velocity fluctuations. The dimensionless Taylor microscale λ(t) was determined from the relation

λ2(t) = 10Ktur/(Re0ε(t)). The microscale LU was calculated based on the solution of problem (31)–(32) by the formula

LU = ∫ 
0

∞

rPtr(dr)/∫ 
0

∞

Pt r(dr) = 
3

2Ktur
 ∫ 
0

∞

rPt(r)dr and the time scale was calculated by the formula TU = LU/√23Ktur .

Fig. 5. Evolution of the fourth derivative of the second-order, two-point struc-
tural function of the scalar field with respect to the spatial variable r at a zero
value of r. The designations are the same as in Fig. 2.
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These length and time scales were analogously determined based on the solution of the problem on spectral
distributions (41)–(42). For this purpose, the above formula for determining the macroscale was converted to the space

k with the use of transform (47), which gives LU = 
3
4
π ∫ 

0

∞
E(k)

k
dk/∫ 

0

∞

E (k)dk = 
3

2Ktur
 
π
2

 ∫ 
0

∞
E(k)

k
dk.

The length and time scales calculated by these two coefficient models have marked quantitative differences.
This is especially true for the characteristic length scales — the macroscale (Fig. 6) and the Taylor microscale. The
linear scales (Figs. 6, 7, and 8) determined based on the solution of the problem in the space r (31)–(32) agree worse
with those obtained by DNS-1 as compare to the analogous scales determined based on the solution of problem (40)–
(41). The reverse situation is observed for the time scale (see Fig. 9). In this case, the data obtained with model (31)–
(32) agree most closely with the data of DNS-1. The initial portion is followed by the portion of near-linear increase
in the macroscale LU and in the Kolmogorov scale η, which corresponds to the theoretical representations.

Fig. 6. Evolution of the integral length scale. The designations are the same as
in Fig. 2.

Fig. 7. Evolution of the turbulent Reynolds number. The designations are the
same as in Fig. 2.

Fig. 8. Evolution of the Kolmogorov length. The designations are the same as
in Fig. 2.

Fig. 9. Evolution of the integral time scale. The designations are the same as
in Fig. 2. 
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CONCLUSIONS

Two complementary models for determining the coefficients of the equation for the joint probability density
of a scalar and its gradient (1) have been constructed. They allow one to predict the evolution of all the coefficients
in Eq. (1) for an isotropic, degenerate field of velocity and scalar fluctuations.

The coefficient models (31)–(32) and (40)–(41) have been tested by comparison of the data obtained with
them to the data of direct numerical simulation performed for the same conditions. The data obtained with the spec-
tral-transfer model based on the Heisenberg hypothesis agree most closely with the data of the direct numerical simu-
lation. The data obtained with both models for the coefficients that are of considerable importance in Eq. (1) (c2

__
(t),

χ(t), and SUC(t)) agree satisfactorily. Using the two alternative models for the coefficients of Eq. (1), one can close
the equation for the joint probability density of a scalar and its gradient without recourse to experimental data.

This work was carried out with financial support from the INTAS (project 001-353) and the Belarusian Re-
public Basic Research Foundation.

NOTATION

c2
__

(t), dispersion of the scalar-field fluctuations; D, diffusion coefficient; DCC
(IV)(0, t), fourth-order derivative of

the second-order structural function of the scalar field with respect to the spatial derivative at a zero value of the lat-
ter; E(k, t), distributions of the energy of the turbulent velocity fluctuations over the wave numbers; E(C)(k, t), distri-
butions of the energy of the turbulent scalar fluctuations over the wave numbers; LU, macroscale; Pe = LU0/D, Peclet
number; Pt(r), distribution of the turbulent velocity fluctuations over the length scales; Pt

(C)(t). distribution of the tur-
bulent scalar fluctuations over the length scales; Pt(W, Γ), joint probability density of the scalar and its gradient;
q2(t)
____

, dispersion of the velocity-field fluctuations; Re = LU0
 ⁄ ν, Reynolds number; Reλ = λU0

 ⁄ ν, turbulent Reynolds
number constructed in the Taylor length scale; s0, scale of the scalar field; SUC(t), mixed skewness of the fields of the
gradients of the velocity and scalar fluctuations; T2(t), square of the correlator between the fields of the scalar and its
second spatial derivative; TU, time scale; t, time; U0, scale of the velocity field; W = √W1

2 + W2
2 + W3

2 , modulus of the
scalar gradient; Γ, magnitude of the scalar fluctuations; ε(t), rate of dissipation of the velocity-field fluctuations; η,
Kolmogorov length scale; λ, Taylor microscale; ρ, density; ν, coefficient of viscosity; χ(t), rate of dissipation of the
scalar-field fluctuations; ω(Γ), rate of a chemical reaction. Subscripts: t, fixed instant of time; U, means that a charac-
teristic is related to the turbulent velocity field; C, means that a characteristic is related to the turbulent scalar field;
UC, means that a characteristic is related to the mutual influence of the turbulent fields of velocity and scalar; tur, tur-
bulence.
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